Researchers working in the Nasca region of southern Peru are no doubt familiar with an intriguing cultural feature known as puquios. Puquios, also referred to as aqueducts or filtration galleries, are artificial channels constructed as tunnels or trenches to gain access to the water table. Between approximately January and April each year, during the rainy season in the Andes, the rivers flow and the water table rises, thereby providing sufficient water for the fields surrounding the puquios. The necessary cleaning of the subterranean channels is timed to coincide with the lowest water level at the warmest time of the year, usually between October and December, when people crawl through the subterranean channels and clear out the debris accumulated over the last year (Urton 1981:4).

While a variety of hydraulic systems were used and adapted throughout the New World before and after the Spanish arrival in the sixteenth century, the puquios discussed here include the three drainages of the Rio Grande de Nasca: the Nasca (Aja and Tierras Blancas), Taruga, and Las Trancas (Figure 1).

Precipitation in the Nasca region itself is insufficient to support current human and agricultural needs: the average rainfall recorded between 1957 and 1965 at the Majoro station, situated about 3 km from the town of Nasca, was 5.03 mm, with a range between 23 mm (in 1963) and 0 mm (in 1958, 1960,
and 1965 with January through September only recorded for the latter year; ONERN 1971 II:15). The puquios help to offset the insignificant amount of precipitation in the Nasca region by acting as a buffer against drought. Although the waters in some of the puquios may fail to rise during times of drought in the Andes, placing some stress upon the system, many never dry up. A drought during 1990 and 1991 ended in March 1991 when heavy rains arrived in the Andes, causing severe flooding in the rivers and damage to the retarded crops in the surrounding fields that were not watered by puquios; in fields where puquio water was available, many of the crops had grown sufficiently that they were able to withstand the effects of the flooding.

The Age of the Nasca Puquios
Evidence for the age of the Nasca puquio system has been brought forth by archaeologists and ethnohistorians. In a preliminary archaeological study of the prehistoric settlements of the Nasca region, Schreiber and Lancho (1988) note that there was an increase of settlements in previously uninhabited areas in the Nasca Valley during Nasca 5, or approximately A.D. 500. These areas are sufficiently dry that the kind of settlement expansion witnessed during Nasca 5 would have been impossible without a permanent water system. Schreiber and Lancho posit that the sudden expansion of Nasca 5 settlements into these zones was due to the construction of the puquios. The settlement pattern study of the Nasca Valley is still ongoing, and the final results have not yet been published (Schreiber and Lancho 1995). Silverman (1986:20) has also suggested that the location of Nasca Valley sites, such as the Middle Horizon Pacheco (Menzel 1964; Paulsen 1983) and the Late Horizon Paredones, might have been
chosen to take advantage of the already existing water system.

The origin of the puquios has been studied by a variety of researchers. An Inka origin was posited by the historian Clements Markham based on his examination of the puquios in 1853 (in Joyce 1912:119–120), as well as by other researchers (see Auza A. 1948, Conkling 1939, González G. 1934). The Peruvian priest and amateur archaeologist A. Rossel Castro stated that the Inka had never built subterranean irrigation systems anywhere in their domain, other than Nasca, and suggested that they were pre-Inka in age (Rossel Castro 1942). Rossel described “Classic Naska” remains recovered from the puquios (Rossel Castro 1977:175–176). There are no illustrations of the artifacts recovered in the puquios by Rossel, nor is there any information about the puquios in question nor the specifics of the location of the artifacts; Rossel’s conclusions are considered unsubstantiated here. Based upon Rossel’s 1977 publication, Petersen (1980) stated that the puquios were built between middle and late Nasca times, or approximately A.D. 400–800. The evidence of the presence of highland Huarpa peoples from Ayacucho, where complex underground water systems had been used extensively in the Nasca region during late Nasca times (Paulsen 1983:104), might also suggest a precedent for the Nasca puquios. Rossel also linked the subterranean puquios with the geometric geoglyphs (see Rossel Castro 1959:355), which he stated contained tombs with Nasca artifacts. We suspect that Rossel was referring to Nasca cemeteries, which abound on the valley margins in the vicinity of the geoglyphs in the Las Trancas, Taruga, and Nasca valleys. There is no direct archaeological or spatial link between the geoglyphs and either the Nasca cemeteries or the puquios.

Some of the better-known early colonial Spanish accounts of the Nasca region, such as those of the sixteenth-century chroniclers Cieza de Leon and Guaman Poma de Ayala, or the seventeenth-century Vazquez de Espinosa, lack specific mention of the presence of puquios. Barnes and Fleming (1991) suggest that the lack of an eyewitness account regarding the puquios dating back to early colonial times indicates that the puquios were a post-Conquest construction by the Spanish. Barnes and Fleming believe that the puquios share much in common with Moorish qanats, which were built throughout the Iberian peninsula, and that the techniques of constructing these hydraulic systems came to the New World with the Spaniards. However, as Kosok points out, there are few references to ancient irrigation works by the early Spanish chroniclers, perhaps because “(m)ost of the writers . . . record the luxury, wealth and abundance of fruits and vegetables in the coastal valleys without inquiring into the method of their production. . . . They were therefore not primarily interested in the economic life of the coast insofar as the people there could be used as human pack animals and mine laborers” (Kosok 1940:172–173).

Trimborn had two wooden lintels from the Cantalloq and Majoro puquios in the Nasca Valley radiocarbon dated (see Scharpenseel and Pietig 1974). These yielded ages of 110±100 B.P. (Bonn-1971) and 140±100 B.P. (Bonn-1972). Radiocarbon ages within this range fall outside the range of reliability of radiocarbon dating because they are too recent. However, it should be noted that such measurements are consistent with the periodic replacement of wooden lintels, and with the fact that maintenance of the puquios has been continuous over many centuries. Thus, radiocarbon ages of perishable materials associated with the regular maintenance of the puquios probably cannot provide evidence for the original construction date of these features. Rather, we must seek more reliable materials for dating that are indicative of, or associated with, the construction of the puquios.

Methods of Numeric Age Assessment of Nasca Puquios

With the exception of Trimborn’s ages, all previous studies of the age of the Nasca puquios have relied upon inferential evidence
of the association of the puquios with demographic, archaeological, ethnohistoric, or comparative data. Recent studies of rock varnish reveal techniques by which the age of construction or the formation of natural and cultural stone features can be discerned by criteria independent of associated cultural material or assigned cultural meaning. These absolute, or numeric, techniques include cation-ratio dating (Dorn 1989), which can provide relative ages, and AMS radiocarbon dating (Dorn et al. 1989; Dorn et al. 1992b).

Rock varnish is a ubiquitous coating of manganese oxides, iron oxides, and clay minerals fixed by bacteria found on exposed rock surfaces. The varnish accretes over time, forming layers that can be discerned under a microscope (Dorn and Oberlander 1982). In stable environmental situations created by arid environments, the chemical composition of uninterrupted layers of varnish can be used to indicate the relative ages of varnished features. The presence of datable organic materials contained on and within rock varnish layers and between the basal layer of varnish and the stone means that the age of varnished cultural features such as the pyramids of Egypt (Blackwelder 1948) and stone artifacts (Hayden 1976; Dorn et al. 1986) can be ascertained independent of typological and iconographic criteria; furthermore, these ages can be corroborated by historical data where available, such as for the Egyptian monuments.

We (Clarkson and Dorn 1991; Dorn et al. 1992a; see also Bray 1992) have undertaken studies of the rock varnishes associated with cultural features in the Nasca region. The nine reported AMS 14C ages from the geoglyphs range between 92 B.C. and A.D. 658, which effectively span the Early Intermediate Phase of Nasca culture. Aside from an internal consistency of the dates (which nevertheless must be carefully considered; see Andrews and Hammond 1990), the ages derived from the rock varnish associated with the Nasca geoglyphs are consistent with independently derived iconographic and archaeological correlations (Clarkson 1990, 1992). Inspection and analysis of the rock varnish formation on Nasca puquio stones indicated a very different varnish from that of the geoglyphs; this varnish did not fulfill the constraints for cation-ratio dating (Dorn 1989). The type of varnish on these faced stones is characteristic of varnish from wet environments, and is totally dissimilar to the type of varnish found in the nearby desert surfaces (Figure 2). Viable cation-ratio dating is dependent upon varnish formed in stable arid environments. The chemistry of the puquio varnish is also dissimilar to subaerial varnish in the nearby desert (Table 1). This evidence of wet-environment formation is consistent with the situation of the stones used to construct the puquios, which is a damp microenvironment relative to the surrounding desert region.

The stones used in the construction of the puquios are from the surrounding region. Open trench-style puquios may be faced with stone retaining walls, while tunnels have masonry or cobble side walls. Some of these are riverine cobbles similar to those found in the nearby riverbeds, and would have been a likely source of this building material. The lintels are also made from a stone consisting of quartzite with iron; this type of stone is locally available, although stones of the size used for the puquio lintels may have been imported. However, in dressing these stones to create the desired rectilinear shape for the lintels, preexisting varnish was removed. If these stones were to have been reused from any of the numerous architectural features scattered throughout the valley, desert-type varnish would have been clearly discernable beneath the damp-climate varnish under microscopic examination.

Microscopic examination of varnished stones shows organic material at the interface between the varnish and the stone that formed on the surface of newly exposed stone surfaces before the onset of varnish formation; very rarely is organic material trapped within varnish layers. Organic material such as cyanobacteria, fungi, and lichens from this interface can be collected and dated using ac-
Table 1. Microchemical Variability in Rock Varnishes Collected from Different Waterflow Environments, Compared with Subaerial Rock Varnish.

<table>
<thead>
<tr>
<th>Sample</th>
<th>MgO</th>
<th>AlO$_3$</th>
<th>SiO$_2$</th>
<th>P$_2$O$_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wailua River, Kauai, Hawaii (Figure 2C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighter texture</td>
<td><.04</td>
<td>19.71</td>
<td>.22</td>
<td>na</td>
</tr>
<tr>
<td>Darker texture</td>
<td><.04</td>
<td>18.97</td>
<td>.21</td>
<td>na</td>
</tr>
<tr>
<td>Average ± 1 sigma</td>
<td><.04</td>
<td>15.96</td>
<td>.34</td>
<td>na</td>
</tr>
<tr>
<td>Average ± 1 sigma</td>
<td><.04</td>
<td>19.06</td>
<td>.22</td>
<td>na</td>
</tr>
<tr>
<td>Kin Kin District stream, Queensland, Australia (Figure 2B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighter texture</td>
<td>.09</td>
<td>19.67</td>
<td>.64</td>
<td>na</td>
</tr>
<tr>
<td>Darker texture</td>
<td><.04</td>
<td>24.55</td>
<td>.18</td>
<td>na</td>
</tr>
<tr>
<td>Average ± 1 sigma</td>
<td>≤.07</td>
<td>20.73</td>
<td>.72</td>
<td>na</td>
</tr>
<tr>
<td>Average ± 1 sigma</td>
<td><.04</td>
<td>20.57</td>
<td>.21</td>
<td>na</td>
</tr>
<tr>
<td>Orcona Puquio (Figure 2A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighter texture</td>
<td><.04</td>
<td>24.36</td>
<td>.46</td>
<td>na</td>
</tr>
<tr>
<td>Darker texture</td>
<td><.04</td>
<td>19.93</td>
<td>.38</td>
<td>na</td>
</tr>
<tr>
<td>Average ± 1 sigma</td>
<td><.04</td>
<td>17.47</td>
<td>1.49</td>
<td>na</td>
</tr>
<tr>
<td>Average ± 1 sigma</td>
<td><.04</td>
<td>13.81</td>
<td>.75</td>
<td>na</td>
</tr>
<tr>
<td>Average ± 1 sigma</td>
<td><.04</td>
<td>24.36</td>
<td>1.76</td>
<td>na</td>
</tr>
<tr>
<td>Subaerial Rock Varnish (Figure 2D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desert pavement, Terrace of Rio Ingenio, north of Nasca, Peru</td>
<td>1.89</td>
<td>19.93</td>
<td>26.85</td>
<td>.92</td>
</tr>
<tr>
<td>From surface of varnish to base of varnish</td>
<td>2.02</td>
<td>18.71</td>
<td>28.65</td>
<td>1.26</td>
</tr>
<tr>
<td>1.58</td>
<td>19.14</td>
<td>24.20</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>1.67</td>
<td>15.78</td>
<td>19.70</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>1.49</td>
<td>16.23</td>
<td>18.76</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>1.76</td>
<td>16.55</td>
<td>21.67</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>16.33</td>
<td>20.90</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>1.24</td>
<td>14.40</td>
<td>16.41</td>
<td>.89</td>
<td></td>
</tr>
<tr>
<td>1.64</td>
<td>16.55</td>
<td>20.24</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>1.49</td>
<td>15.49</td>
<td>17.97</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>Average ± 1 sigma</td>
<td>1.69</td>
<td>16.91</td>
<td>21.54</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Notes: Analysis by wavelength dispersive microprobe, using ZAF correction and 10 micrometer spot size. Transects identified on micrographs in Figure 2. Na = not analyzed; bld = below limit of detection.

Rock varnish samples were collected from the lintels of the Orcona and Cantalloq puquios in the Nasca region. The lintels were chosen because their durability, and the effort that went into shaping them, would have made them unlikely to have been replaced. In addition, the shape of the two-faced lintel...
Table 1. Extended.

<table>
<thead>
<tr>
<th>K2O</th>
<th>CaO</th>
<th>TiO2</th>
<th>MnO</th>
<th>FeO</th>
<th>BaO</th>
</tr>
</thead>
<tbody>
<tr>
<td><.04</td>
<td><.04</td>
<td><.03</td>
<td>45.69</td>
<td>.06</td>
<td>3.39</td>
</tr>
<tr>
<td><.04</td>
<td><.04</td>
<td><.03</td>
<td>55.52</td>
<td>.08</td>
<td>4.22</td>
</tr>
<tr>
<td><.04</td>
<td><.04</td>
<td><.03</td>
<td>50.34</td>
<td>.18</td>
<td>3.77</td>
</tr>
<tr>
<td><.04</td>
<td><.04</td>
<td><.03</td>
<td>50.03</td>
<td>.45</td>
<td>3.64</td>
</tr>
<tr>
<td><.04</td>
<td><.04</td>
<td><.03</td>
<td>50.40 ± 4.02</td>
<td>.19 ± .18</td>
<td>3.76 ± .35</td>
</tr>
<tr>
<td>bld</td>
<td><.04</td>
<td><.03</td>
<td>.57</td>
<td>bld</td>
<td>bld</td>
</tr>
<tr>
<td>.18</td>
<td><.04</td>
<td><.03</td>
<td>.28</td>
<td>.05</td>
<td>.04</td>
</tr>
<tr>
<td>.17</td>
<td><.04</td>
<td><.03</td>
<td>.12</td>
<td>.02</td>
<td>.08</td>
</tr>
<tr>
<td>.02</td>
<td><.04</td>
<td><.03</td>
<td>.38</td>
<td>.04</td>
<td>bld</td>
</tr>
<tr>
<td>.12 ± .09</td>
<td><.04</td>
<td><.03</td>
<td>.34 ± .19</td>
<td>.04 ± .02</td>
<td>.06 ± .03</td>
</tr>
<tr>
<td></td>
<td>.04</td>
<td><.03</td>
<td>50.98</td>
<td>.08</td>
<td>3.46</td>
</tr>
<tr>
<td></td>
<td>.80</td>
<td><.04</td>
<td>44.93</td>
<td>.13</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>.10</td>
<td><.04</td>
<td>41.66</td>
<td>.62</td>
<td>2.89</td>
</tr>
<tr>
<td>≤.31 ± .42</td>
<td>≤.04</td>
<td><.03</td>
<td>46.90 ± 4.38</td>
<td>.23 ± .26</td>
<td>3.20 ± .25</td>
</tr>
<tr>
<td><.04</td>
<td><.04</td>
<td><.03</td>
<td>26.17</td>
<td>7.70</td>
<td>1.15</td>
</tr>
<tr>
<td><.04</td>
<td><.04</td>
<td><.03</td>
<td>19.04</td>
<td>4.36</td>
<td>.87</td>
</tr>
<tr>
<td><.04</td>
<td><.04</td>
<td><.03</td>
<td>17.77</td>
<td>9.56</td>
<td>.91</td>
</tr>
<tr>
<td><.04</td>
<td>≤.07</td>
<td>.05 ± .01</td>
<td>20.99 ± 4.53</td>
<td>7.21 ± 2.63</td>
<td>.98 ± .15</td>
</tr>
<tr>
<td>≤.06 ± .02</td>
<td>≤.04</td>
<td>≤.04</td>
<td>46.97 ± 1.57</td>
<td>.62 ± .30</td>
<td>2.49 ± .14</td>
</tr>
<tr>
<td><.04</td>
<td>.03</td>
<td><.05</td>
<td>18.42</td>
<td>4.77</td>
<td>1.04</td>
</tr>
<tr>
<td><.04</td>
<td>.03</td>
<td><.03</td>
<td>16.05</td>
<td>3.19</td>
<td>1.19</td>
</tr>
<tr>
<td><.04</td>
<td>.07</td>
<td><.05</td>
<td>21.30</td>
<td>3.70</td>
<td>1.26</td>
</tr>
<tr>
<td>≤.04</td>
<td>.05</td>
<td><.03</td>
<td>24.55</td>
<td>3.75</td>
<td>1.40</td>
</tr>
<tr>
<td>≤.04</td>
<td>.05 ± .02</td>
<td>≤.05</td>
<td>20.08 ± 3.67</td>
<td>3.85 ± .66</td>
<td>1.22 ± .15</td>
</tr>
</tbody>
</table>

1.12 | 1.12| .37 | 12.74| 14.68 | .21 |
2.22 | 0.88| .63 | 9.25| 14.58 | 1.21 |
1.48 | 1.19| .43 | 10.50| 19.14 | 1.50 |
1.59 | 1.41| .70 | 9.53| 24.24 | 2.17 |
1.41 | 1.33| .55 | 12.12| 24.82 | 1.82 |
1.78 | 1.23| .58 | 10.67| 24.59 | 1.84 |
1.71 | 1.26| .47 | 8.34| 24.26 | 2.21 |
1.64 | 1.12| .58 | 9.17| 22.77 | 1.98 |
1.51 | 1.16| .58 | 10.48| 26.93 | 1.84 |
1.48 | 1.09| .63 | 12.47| 22.69 | 2.05 |
1.59 ± .29 | 1.18 ± .15| .55 ± .10 | 10.53 ± 1.51| 21.87 ± 4.31 | 1.68 ± .60 |

Stones is unusual, carved from unusually large stones uncommon in the region; we have not seen such dressed stone slabs in structures present in archaeological sites in the region. The ages of each of the samples, 1460 ± 50 B.P. (TO-1622; organic matter from rock varnish; δ13C = -25‰), cal A.D. 600(640)660 (calibrated at 1 sigma) (Stuiver and Reimer 1993) from the Orcona puquio lintel, and 1430 ± 60 B.P. (TO-1623; organic matter from rock varnish; δ13C = -25‰), cal A.D. 600(640)660 (calibrated at 1 sigma) (Stuiver and Reimer 1993), from the Cantalloq puquio lintel, are internally consistent with each other, as well as with a suite of nine other radiocarbon dates from geoglyphs from the
Nasca region (Clarkson and Dorn 1991; Dorn and Clarkson 1992; Dorn et al. 1992a). While internal consistency is not necessarily an indication of overall reliability (see, for example, Andrews and Hammond 1990), these dates also fall within the age ranges suggested by other dependent means mentioned earlier. While it is theoretically possible that non-contemporaneous older organic matter had been incorporated into the sampled varnish (Dorn et al. 1989), no examples of this possibility have been encountered in analyzing scores of samples worldwide (Dorn et al. 1992a).

Implications of Radiocarbon Dates for Nasca Puquios

Two assumptions are implicit in the analysis presented here: (1) AMS ¹⁴C dating of rock varnish provides reliable minimum-limiting ages, and (2) sample contamination can be recognized. These assumptions are explored in this section.

Rock Varnish Dating

AMS ¹⁴C is a reliable dating technique in archaeology when used within the limitations of the method (Goh 1991; Taylor 1987).
Statements to the effect that radiocarbon dating is an unreliable or "experimental" method (Barnes and Fleming 1991:61) ignore a body of literature that indicates otherwise. While our approach to extracting organics is indeed experimental, independent assessments of the validity and reliability of AMS 14C dating of rock varnish demonstrate that the method is reliable (Dorn et al. 1989; Loendorf 1991). Radiocarbon ages for organic material on the surface of rock varnish must be younger than organic material at the interface of the rock varnish and the underlying surface. This has been shown in all prior tests (Dorn et al. 1989, 1992b; see also Dorn et al. 1986, 1987, 1989, 1991, 1992a, 1992b).

The AMS 14C dates derived from organic material at the interface of the rock varnish and the dressed stone lintels of the two puquios are consistent with the ages derived for the puquios, based upon the shifts in settlement locations documented by Schreiber (Schreiber and Lancho 1988) in Nasca 5. Sample Contamination

All samples to be considered for AMS 14C dating are first subjected to microscopic examination for evidence of poorly formed or interrupted varnish development. These disturbances can be caused by the growth of lichens that destroy varnish, or by stone surfaces that have been alternately exposed to and hidden from varnish development through natural or cultural intervention. In these situations, the context of any organic material trapped between the stone and the initial layer of varnish is too disturbed to be considered. These analyses can indicate when a sample is inappropriate for AMS 14C dating. Moreover, the differential nature of the formation of rock varnish in arid vs. wet conditions has been noted by Dorn, and these differences are easily detected under a microscope.

Barnes and Fleming (1991:61; see also Barnes 1992) reject the ages of the samples we collected from the Nasca puquios (Clarkson and Dorn 1991). Barnes and Fleming suggest that the stones we sampled from the puquios were derived from earlier Prehispanic structures that were mined by the Spaniards for suitable stones for building puquios, and thus our radiocarbon dates provide an age for the stones, and not the construction of the puquios in question. We agree that this is, in theory, a possibility that should be considered, but the chemical, micrographic, and physical evidence indicate otherwise. These types of evidence are discussed below.

Rock varnishes can be found in a variety of environments, including springs, streams, caves, soil peds, regoliths, and the more commonly studied subaerial "desert" varnishes (Dorn and Oberlander 1982). Varnishes formed in different environments, such as the damp puquio and the adjacent "desert" varnishes of Nasca, have different chemistries and textures.

Figure 2a illustrates a backscatter electron micrograph of rock varnish formed in the Orcona puquio lintel, one of our sample sites. In backscatter images, the brightness of the texture reflects the chemistry (brighter = higher atomic number). The varnish of the puquio is brighter in color than the underlying rock because of the great abundance of manganese in the former (Table 1). However, the texture and chemistry of the adjacent subaerial varnish are totally dissimilar (Figure 3d; Table 1). The $\text{Al}_2\text{O}_3/\text{Si}_2\text{O}_5$ ratios in Table 1 are extremely high in the puquio varnish, yet are typical for subaerial varnishes in the adjacent desert. MgO, K_2O, CaO, and TiO_2 are virtually lacking in the puquio varnish, but are at typical minor element concentrations in the desert varnish. FeO is at very low or minor element concentrations in the puquio varnish, but in much greater abundance in varnishes in the nearby desert.

The texture and chemistry of the puquio varnish, in fact, are most similar to water flow varnishes found in tropical settings. Tropical stream varnishes are among the first types of rock varnish studied (see Boussingault 1882; Darwin 1897; Francis 1921; Hume 1925; von Humboldt 1812). Figure 2c shows varnish formed on boulders in the splash zone of
Wailua River, Kauai. Figure 2b illustrates varnish collected from the same region where Francis (1921) conducted a classic study of the formation of rock varnish on boulders of tropical streams in Queensland, Australia. The range of textures and chemistry in these stream varnishes is quite similar to the textures and chemical variation found in the puquio varnish (Table 1).

Finally, the situation and characteristics of the puquio lintels were examined in the field. The unusual size and shape of the lintel stones have already been noted here. Wooden lintels are known from puquios under current use. While wooden lintels would have been likely to deteriorate in the damp climate of the puquios, the stone lintels are unlikely to have suffered any damage or deterioration over the centuries, and thus were unlikely to have been replaced.

The implication of these findings is that the puquio varnishes we sampled were not "reused," as suggested by Barnes and Fleming. The puquio varnishes were formed in the damp environment of the puquio chamber, not in the adjacent desert. In our studies of the puquio varnish, there is no evidence of an "overprint" of water flow varnish superimposed over a previous subaerial varnish. If the varnishes on which we placed minimum ages were indeed reused, as Barnes and Fleming (1991:61) believe, the following very unlikely series of events would have had to transpire. First, the lintel stones would have to have been faced sometime before ca. 1560 B.P. (the 2-sigma variation of the \(^{14}\)C age of 1450±55). Second, both faced stones (from the Cantalloq and Orkona puquio lintels) would have to have been transported to a perennial stream where a water flow varnish would have formed. Third, after the water flow varnish formed on the faced surfaces (a process taking an unknown period of time), these faced stones were transported to two separate puquios and set in the roof. While this scenario is possible, it is not very plausible. Barnes's (1992) suggestion that the lintel stones may have come from the Early Intermediate site of Tambo Viejo in the Acari Valley, where she says there is flowing water, presupposes that the unusually sized and shaped Nasca puquio lintel stones were sitting in flowing water at Tambo Viejo before transport to Nasca in 1954. Josue Lancho, a life-long resident of Nasca and former representative for the Instituto Nacional de Cultura in Nasca, has taken a special interest in studying the puquios (see Schreiber and Lancho 1988); he showed us puquios for which he had no knowledge or information of any reconstruction activity. He is certainly aware of the puquio reconstructions that have been undertaken in the region, having participated and advised in some of these reconstruction efforts.

We know of no water-flow varnish forming at present in the region, other than in the puquios (Figure 3a). Varnish is fairly delicate (Mohs hardness is \(\leq 4\frac{1}{2}\)). The transport from the hypothetical source of water and the subsequent puquio construction would have to have been accomplished in a fashion that would not have eroded the delicate varnish. Lastly, the similarity of the two radiocarbon ages derived from the puquios requires that the faced stones were placed in the water-flow environment at about the same time for the "reuse" hypothesis to be correct. In addition, all of the lintel stones that we viewed were securely in place, rendering it further unlikely that they would be easily dislodged.

Although there is ample building stone available in the Nasca region, it is possible that stones subjected to the conditions necessary for the formation of water-flow varnish were brought in from elsewhere to complete the construction of the Nasca puquios. The most likely source is the archaeological site of Tambo Viejo in the Acari Valley, where Menzel and Riddell noted trucks carrying off large quantities of cobbles from the walls throughout the site in 1954 "for the irrigation project on the pampa and elsewhere" (Menzel and Riddell 1986:3). It is unlikely, however, that stones removed from Tambo Viejo could be the same stones as those encoun-
tered in the Nasca puquios for three reasons. First, the majority of the stones used in building at Tambo Viejo were cobbles from the nearby Río Acari; Menzel and Riddell note that cobbles were used for Nasca structures and possibly reused by the Inka in later constructions (Menzel and Riddell 1986:7). While the interior walls visible from the entrance-way of the Nasca puquios examined were made of river cobbles, there is an ample supply of river cobbles available in nearby streams at Nasca. Second, the only shaped stones mentioned at Tambo Viejo were grinding slabs (Menzel and Riddell 1986:13) and sandstone blocks in the Inka architecture at the site (Menzel and Riddell 1986:17). Neither of these conform to the shape or material of the puquio lintel stones tested in the Nasca region. Third, the situation of Tambo Viejo is on a bluff above the flood plain (Menzel and Riddell 1986:2-3), and the likelihood of flowing water through the site, except for that caused by occasional rainfall, is remote.

Viability of Nasca Puquio Varnish Ages

The Prehispanic radiocarbon ages obtained from the Orcona and Cantalloq puquios contrast with the eyewitness accounts of the Spanish colonial documents, in which there is a lack of any known mention of the puquios in the Nasca region before 1692 (Barnes and Fleming 1991:52). We have addressed the methodology of varnish dating and the sampling procedures used on two Nasca puquios; here we address the significance of the historical documents regarding the age of the Nasca puquios. A review of major documents on filtration-gallery irrigation systems in the New World and in the Iberian peninsula has been presented by Barnes and Fleming (1991). Perhaps the most significant information revealed in the Spanish colonial documents regarding the Nasca puquios is what is not recorded in the documents. There are three monumental features of the Nasca region—the puquios, the geoglyphs, and the site of Cahuachi—and none of them is mentioned in the colonial period documents known to us. It is curious that the Spanish chroniclers recorded nothing about the geoglyphs in the Nasca region, nor those found elsewhere throughout the arid coastal desert of Peru. The linear geoglyphs in the Nasca region—trapezoids and straight lines measuring up to many kilometers long—are densely situated, visually impressive, and easily seen from the ground or from isolated low hills. Many geoglyphs exist in the vicinity of known colonial period haciendas. On the basis of iconographic, stylistic, and contextual grounds (Aveni 1990; Browne and Baraybar 1988; Clarkson 1985, 1990; Isbell 1978; Silverman 1990), there is little question that the geometric and biomorphic figures of the Nasca region are Precolumbian in age. Recent radiocarbon analyses of the varnish on the geoglyphs confirm a Precolumbian age (Clarkson and Dorn 1991; Dorn et al. 1992a).

A lack of commentary by the Spanish about the puquios must also be considered in the context of a similar lack of commentary about major archaeological complexes in the region with standing monumental architecture. No known colonial documents mention the huge Prehispanic archaeological complexes of Cahuachi and Estaquería, downstream of the modern town of Nasca. There is no question that Cahuachi is a Precolumbian site (Strong 1957; Silverman 1985). Thus, an ex silentio argument by Barnes and Fleming (1991) regarding the lack of known written Spanish commentary on the puquios, until after the Spanish had settled the Nasca region, should logically be applied to the geoglyphs and Cahuachi, too.

Barnes and Fleming (1991:59) suggest that the Spanish tradition of constructing the puquios continues to this day, noting as evidence that a “recently remodeled” water system in the Azapa valley of northern Chile bears a “striking” similarity to the Nasca puquios. They point out that both systems use “small water-rounded stones to line the canals” and both “incorporate open channels.” The materials used in the Azapa and Nasca water systems were both readily available and
satisfied the needs of the builders. In fact, the radiocarbon ages obtained for the Cantalloc and Orcona puquios in the Nasca region indicate that these puquios are of Prehispanic origin. Schreiber and Lancho’s (1988) study of Prehispanic settlement patterns in the Nasca region indicates a correlation between puquios in three Nasca drainages and an expansion of Nasca 5 settlements. Neither Schreiber and Lancho’s nor our studies address or indicate that other hydraulic systems of coastal Peru and Chile are of similar age. Indeed, until numeric age assessments of stones associated with hydraulic systems can be obtained, and archaeological explorations of these hydraulic features can be undertaken, a Prehispanic age of at least some of the Nasca puquios must be considered, based upon the evidence that does exist.

Implications of Puquios for Prehispanic Nasca Residents

What might have motivated the Precolumbian residents of the Nasca region to construct the puquios? Repeated failures of the water to appear in the upper reaches of the rivers may have been a factor motivating them to seek out alternative sources of water. Increasing aridity along coastal Peru around A.D. 500 is suggested by glacial cores from Quelccaya glacier (Thompson et al. 1985) and the environmental data from the north coast of Peru (Nials et al. 1979a, 1979b; Shimada et al. 1991).

The construction of such a major hydraulic system during Nasca times suggests social, political, ideological, and economic ramifications for the residents of the region. Any communities upstream of the newly constructed puquios would no longer have had any control over the water sources of downstream populations in the Nasca Valley, which may have led to a shift in power away from the upstream communities. Communities using the puquios would have likely participated in their maintenance, thereby indicating a level of coercion and cooperation typical of nonegalitarian societies. Regular maintenance of the puquios is essential, as failure to clean debris out of the subterranean channels would leave them blocked and ineffective for delivering water to the communities relying upon them. The annual rise of subterranean water beginning around December-January in the Nasca Valley, coinciding with the rainy season in the Andes, would have been obvious to the inhabitants of the Nasca region. Cerro Blanco (White Mountain) stands out in sharp contrast against the dark-colored pampas and Andes mountains, and can be seen from virtually all parts of the Nasca region. It is likely that the Nasca residents noted other correlations with the rise of the subterranean waters. Cerro Blanco is connected with the origin of the puquios in a legend recorded in the Nasca region in 1982.

In ancient times, before there were aqueducts in the valley, a great drought occurred and the people had no water for years. The people began crying out to their god, Viracocha or Con. They cried and screamed the word nanay (Quechua for “pain”); they were Quechua-speakers. The word nanay was the origin of the name of the city: nanay → nanasca → Nazca. The people went en-mass to the foot of Cerro Blanco, which was their principal templo or adoratorio; this was the place where they spoke to the gods. At that moment, Viracocha/Con descended from the sky to the summit of the mountain and heard the weeping of his people. He was so moved by their cries that he began weeping, and tears flowed from his eyes. The tears ran down Cerro Blanco, penetrated the earth, and these tears were the origin of the aqueducts [Urton 1982:10–11].

It should also be noted that the December solstice sun rises behind Cerro Blanco as viewed from the region of the puquios. This “announcement” might have been to prompt the necessary preparations for the upcoming agricultural cycle.

Conclusions

The dilemma between “history” and “folk tradition” is by no means unique to the post-Conquest New World. In the Andean region, as well as elsewhere, people trained in the Western tradition tend to rely upon “historical” accounts of the Spanish chroniclers as fully reliable and to consider the “histories” of indigenous people as quaint and fabricat-
ed. As Urton (1990:11) notes with regard to Inka accounts recorded by the Spanish, “the traditions preserved in the Spanish chronicles are the product of variously motivated, hierarchical interpretations (i.e., teller → translator → recorder). The possibility of ambiguities, misunderstandings, and individually motivated interpretations entering the accounts throughout this process is enormous.” In a similar vein, Ohnuki-Tierney (1987:3) has noted “that both ethnographic and historical representations are incomplete, partial, and overdetermined by forces . . . that are beyond the control of consciousness of the individuals who are involved in the complex process of representing and interpreting the ‘other,’ be it historical or ethnographic.”

Chroniclers, like archaeologists, are only human, and cultural bias and errors are replete throughout the accounts of the Spanish chroniclers. As informative as the colonial accounts are of colonial Peru, it would be erroneous to assume that the total reality of early colonial Peru is accounted for in the chronicles. We feel that the hypothesis best shared by Occam is that at least the Orcona and Cantalloq puquios were constructed before ca. 1450 B.P., as corroborated by demographic, contextual, and absolute chronological analyses.

Acknowledgments. Funding for this research was provided by a Social Sciences and Humanities Research Council of Canada Grant #410-90-1097 to Clarkson, an Athabasca University Learning Services Professional Development Fund Grant to Clarkson, and a National Science Foundation Presidential Young Investigator Award to Dorn. The Instituto Nacional de Cultura in Peru provided permission to collect geological samples in Peru. We are particularly grateful to Josué Lancho R. for his assistance in Nasca, and to Katharina Schreiber (University of California at Santa Barbara), Gary Urton (Colgate University), and Warwick Bray (Institute of Archaeology, University College, University of London) for critique and commentary on this manuscript.

References Cited

Darwin, C. 1897 Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of the H.M.S. Beagle Round the World, under the command of Capt. Fitz Roy, R.N.D. Appleton, New York.

Dorn, R. I., P. B. Clarkson, M. F. Nobbs, L. L. Loendorf, and D. S. Whitley
Gonzalez Garcia, M. F.

Dorn, R. I., D. J. Donahue, T. W. Linnick, and L. J. Toolin

Dorn, R. I., A. J. T. Jull, D. J. Donahue, T. W. Linick, and T. A. Cahill

Dorn, R. I., D. B. Turrin, A. J. T. Jull, T. W. Linick, and D. J. Donahue

Dorn, R. I., A. J. T. Jull, H. W. Linnick, and A. J. T. Jull

Francis, W. D.

Goh, K. M.

González García, M. F.

Petersen, G. G.

Rossel Castro, A.

Paulsen, A.

Hayden, J.

Hume, W. F.

Isbell, W.

Joyce, T. A.

Kosok, P.

Krisnley, D., R. I. Dorn, and S. Anderson

Loendorf, L. L.

Mejía Xessepe, T.

Menzel, D.

Menzel, D., and F. A. Riddell

Nials, F. L., E. E. Deeds, M. E. Moseley, S. Posorski, and T. Posorski

ONERN (Oficina de Nacional de Evaluacion de Recursos Naturales)

Ohnuki-Tierney, E.

Paulsen, A.

Petersen, G. G.

Scharpenseel, H. W., and F. Pietig

Schreiber, K., and J. Lancho Rojas

Shimada, I., C. B. Schaaf, L. G. Thompson, and E. Moseley-Thompson

Silverman, H.

Strong, W. D.

Stuiver, M., and P. J. Reimer

Taylor, R. E.

Thompson, L. G., E. Moseley-Thompson, J. F. Bolzan, and B. R. Koci

Trimborn, H.

Urton, G.

von Humboldt, A.

Received July 23, 1993; accepted March 31, 1994.