Digital processing of back-scatter electron imagery: A microscopic approach to quantifying chemical weathering

Ronald I. Dorn Geography Department, Arizona State University, Tempe, Arizona 85287-0104

ABSTRACT

This paper introduces digital processing of back-scattered electron imagery (BSE) as a microscopic approach to measure porosity from in situ dissolution of minerals. Four case studies exemplify this technique. Cases 1 and 2 explore the initiation and maintenance of weathering forms. In case 1, alveoli start in the Sedona area of Arizona when sandstone porosity exceeds ~32%. This threshold is probably the point at which intergrain cohesion is reduced enough for shear stresses to erode grains. Case 2 examines the maintenance of gamma pits and polygonal cracks on a basalt boulder on the island of Maui, Hawaii. Rock dissolution progresses while the surface of the rock is preserved under coatings of silica glaze. When a porosity of ~37%–47% is reached, the weathering rind loses cohesion and spalls. Then, the protective silica glaze starts to accrete again, and another cycle begins.

Cases 3 and 4 involve measuring rates of dissolution over thousands of years. Case 3 concerns rock dissolution in weathering rinds formed on ventifacted aplite boulders. Weathering rinds lost mass for the last 14 k.y., at a rate of 40 ± 15 g/m²/k.y., and for the last 17 k.y., at a rate of 43 ± 16 g/m²/k.y. Dissolution rates increased over time to 67 ± 23 g/m²/k.y. for the last 60–65 k.y. Case 4 addresses the classic topic of which variable is most important in chemical weathering: temperature, precipitation, or microenvironment. In situ measurements of plagioclase dissolution in ~3-k.y.-old basalt flows reveal that warmer temperatures enhance rates of plagioclase dissolution by about 0.07%/°C, when precipitation and microenvironment are controlled. Plagioclase dissolution increases as precipitation increases at higher elevations, even though temperature decreases. However, microenvironment is a more important control on plagioclase dissolution; organic-rich positions (under lichens) weather two to seven times faster than adjacent organic-poor positions away from epilithic organisms and rock coatings.

Rates of rock weathering are often established indirectly, by measuring the erosion of weathered material. In contrast, this microscopic method measures only in situ weathering. Conventional measures of rock weathering usually involve units, for example, depth of weathering pits or thickness of weathering rinds, that are not readily comparable to other data. In contrast, cases 3 and 4 illustrate that in situ measurements of rock and mineral porosity can yield data on mass weathered per unit area over time. This information is comparable to mass balance approaches in watershed- and soil-based weathering research.

INTRODUCTION

Weathering is the in situ breakdown and decay of minerals and rocks by biochemical and physical processes (Yatsu, 1988; Nahon, 1991). Weathering is a key research and pedagogic topic in the earth sciences, because it is the interface at which the crust interacts with the atmosphere, biosphere, and hydrosphere. Spatial variations in weathering processes influence the character of soil, fluvial, mass wasting, eolian, glacial, and coastal processes and landforms (e.g., Twidale, 1982; Brimhall and Dietrich, 1987; Brimhall et al., 1988; Lundqvist, 1988; Caine, 1992; Colin et al., 1992; Young and Young, 1992; McLeannan, 1993).

Although physical, biological, and chemical weathering are synergistic and difficult to separate (Brimhall et al., 1991; Colin et al., 1992; Pope et al., 1995), this paper focuses on chemical weathering. Chemical weathering is increasingly being recognized as an important player in the earth system. Ca- and Mg-silicate weathering influences long-term climate through the capture of CO₂ (Brady, 1991; Velbel, 1993; Probst et al., 1994; Gibbs and Kump, 1994). Chemical weathering is similarly important in evolutionary biology (Schwartzman and Volk, 1991), rock permeability (Fuller and Sharp, 1992), stone conservation (Emery, 1960; Paradise, 1993), acid rain studies (Meiendorf, 1993a), geochronology (Birkeland, 1984), paleoenvironmental research (Dannin, 1985; Alpers and Brimhall, 1988; Yapp and Poths, 1992; Clemens et al., 1993; Bird et al., 1993), geoarchaeology (Lyman and Fox, 1989; Benito et al., 1993), glaciology (Souchez et al., 1990), soils (Dixon et al., 1984; Brimhall et al., 1991; Merritts et al., 1992; Colin et al., 1992), planetary geology (Gibson et al., 1982), ore deposits (Alpers and Brimhall, 1989; Colin et al., 1993), fossil fuels exploration (Giles and Marshall, 1986), and environmental biogeochecmistry (Likens et al., 1977).

The purpose of this paper is to introduce and exemplify a microscopic approach to the quantification of chemical weathering that can be used as a stand-alone tool, or integrated with other techniques. Digital image processing of back-scattered electron (BSE) microscope imagery is presented here as a means of measuring pores from the in situ dissolution of minerals. Pores appear dark in a BSE image, which contrasts greatly with the surrounding mineral material that appears bright (Fig. 1). Image processing quantifies porosity by automated procedures that count the dark pore space. Digital image processing (Jensen, 1986) and BSE (Krinley and Manley, 1989; Braun et al., 1990; Colin et al., 1992) have been combined previously to quantify porosity in petroleum research (Ehrlich et al., 1991), but not to quantify chemical weathering.
Figure 1. BSE (except IA) images of different weathered minerals. Scale bars in micrometers. (A) Secondary electron micrograph of clay minerals in a weathering rind on a ventifacted boulder from Bishop Creek, eastern California. The clay minerals (with a clear Al signal in energy dispersive analyses) in the center cannot be readily distinguished from the weathered quartz on the right and lower left corners. (B) Dissolution of quartz, from regolith at Cabo San Lucas, Baja California. The polished section was placed in a barium chloride solution, and the Ba was sorbed by the weathering front—giving those localities of active weathering a brighter appearance, due to the high Z of Ba. (C) Dissolution of the brighter orthoclase (upper right) is greater than the darker quartz (lower left), from same site as IA. (D) Dissolution of the darker plagioclase is greater than the surrounding olivine and clinopyroxene, from the weathering rind of the ~2885 ± 150 yr B.P. fsd p3.5 flow (Rubin et al., 1987; Moore and Clague, 1991) at around 600 m, from Huualai, Hawaii (Wasklewicz, 1994). (E) Dissolution of the hornblende grain in the center is greater than the surrounding darker quartz and the bright magnetite grain in the lower left; from Clark Mountains, Marie Byrd Land, Antarctica. (F) Dissolution “etch” pattern on magnetite grain, from active crest of the Kelso Dunes, Mojave Desert, California. (G) Characteristic linear etching weathering pattern on clinopyroxene grain, from same site as D. (H) Biotite weathering by dissolution, from same site as IB. (I) Biotite weathering by hydration and perhaps by the precipitation of bright iron-oxides, although it is possible that the oxides are primary. Sample from petroglyph adjacent to Stuart Mountain Dam, central Arizona.

The first part of this paper explains a niche that a microscopic approach may help fill, within the context of other methods of quantifying chemical weathering. The method and its limitations are detailed in the second part of the paper. Lastly, the measurement of in situ mineral dissolution is explored in case studies that exemplify four different types of research problems: (1) the initiation of a weathering form; (2) the maintenance of a weathering form; (3) the in situ measurement of mass lost from boul-
under weathering rinds over time; and (4) an assessment of the significance of temperature, precipitation, and microenvironment in the dissolution of plagioclase.

THE NEED FOR AN IN SITU MICROSCOPIC APPROACH

The last decade has seen considerable growth in the variety of methods (Table 1) used to quantify natural rates of chemical weathering (e.g., Colman and Dethier, 1986; Brimhall and Dietrich, 1987; Moran et al., 1988; Brimhall et al., 1991; Colm et al., 1992, 1993a; Drev and Zobrist, 1992; Steward, 1993; Velbel, 1993a, 1993b; Brown et al., 1994; Bluth and Kump, 1994; Lasaga et al., 1994). This growth is despite an inherent observational constraint that natural chemical weathering is often so slow as to be virtually unnoticeable during the career of an individual researcher (Colman and Dethier, 1986; Gosse et al., 1993; Beauvais and Colin, 1993; Brown et al., 1994).

Some of these new approaches have an integrative, holistic perspective that biochemical and physical weathering are synergistic, affect surficial materials that range in depth from micrometers to hundreds of meters, and span time scales up to 100 Ma (e.g., Brimhall et al., 1988; Vasconcellos et al., 1992; Colm et al., 1992, 1993b; Brown et al., 1994). This holistic perspective views weathering as more than just alteration of minerals; it relates weathering to authigenic minerals, mass fluxes in the regolith, soil development, biogeochemical interactions, petrography, and elon additions and losses and hence impacts virtually all studies of natural weathering because of the ubiquity and the time depth involved in weathering (Brimhall et al., 1991; Lasaga et al., 1994; Pope et al., 1995).

Multiple techniques used in tandem have yielded new insights (e.g., Brimhall et al., 1991; Beauvais and Colin, 1993). For example, secondary electron images inform about three-dimensional “topographic” relationships between minerals. High-resolution transmission electron microscopy determines the nature of pores smaller than the 0.1 μm limit of the BSE method (Krisley et al., 1993). The electron microscope obtains quantitative chemical analyses. X-ray diffraction reveals mineralogy, and physiochemical strain-gauge data provide insight

![Table 1. Different Approaches Used to Measure Rates of Chemical Weathering](image-url)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Method</th>
<th>Units</th>
<th>Change*</th>
<th>Selected citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catchment studies</td>
<td>Analyze output</td>
<td>μeq/yr; Sr isotopes</td>
<td>W, E, A, Tr.</td>
<td>Bricker et al., 1980; Mast et al., 1993; Blum et al., 1994</td>
</tr>
<tr>
<td>Catchment studies</td>
<td>Analyze output</td>
<td>mg/L; mol/m²/yr</td>
<td>W, E, A, Tr.</td>
<td>Dethier, 1986, 1988; Velbel, 1986, 1993a</td>
</tr>
<tr>
<td>Field/oriented studies</td>
<td>Mass balance-geology formation</td>
<td>g/yr; kg/ha/yr</td>
<td>W, E, A, Tr.</td>
<td>Swoboda-Colberg and Drevv, 1993; Velbel, 1993b</td>
</tr>
<tr>
<td>Analysis of soils</td>
<td>PROFILE model</td>
<td>g/ha/yr</td>
<td>W, E, A, Tr.</td>
<td>Sverdrup and Wafsving, 1993</td>
</tr>
<tr>
<td>Analysis of soils</td>
<td>Soil mass balance</td>
<td>Mass change</td>
<td>W, E, A, Tr.</td>
<td>Merritt et al., 1992</td>
</tr>
<tr>
<td>Analysis of soils</td>
<td>Physical weathering strain</td>
<td>Sxx, mass change</td>
<td>W, E, A, Tr.</td>
<td>Brimhall and Dietrich, 1987</td>
</tr>
<tr>
<td>Analysis of soils</td>
<td>Soil micromorphology</td>
<td>Volume change</td>
<td>W, E, A, Tr.</td>
<td>Moran et al., 1988</td>
</tr>
<tr>
<td>Analysis of soils</td>
<td>Soil characteristics</td>
<td>Changes in horizon</td>
<td>W, E, A, Tr.</td>
<td>Birkeland, 1984; Muehlen, 1990</td>
</tr>
<tr>
<td>Analysis of soils</td>
<td>Lithology comparison</td>
<td>Ratio surface/subsurface lithologies</td>
<td>W, E, A, Tr.</td>
<td>Birkeland, 1984</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Plutonic rock material</td>
<td>g/yr</td>
<td>W, E</td>
<td>Caine, 1979; Trudgill et al., 1994</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Micro-roughness meter</td>
<td>Slopes of mire</td>
<td>W, E</td>
<td>McCallor and Nesje, 1993</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Microrheometry</td>
<td>m/s</td>
<td>W, E</td>
<td>Viles and Trudgill, 1984</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Core identifer</td>
<td>mm</td>
<td>W, E</td>
<td>Hall, 1993</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Schmidt hammer</td>
<td>Rebound value</td>
<td>W, Tr.</td>
<td>Day and Goudie, 1977</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Compressional wave speeds</td>
<td>Velocity (km/s)</td>
<td>W, Tr.</td>
<td>Crook, 1986</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Ultrasonic waves</td>
<td>Ratio</td>
<td>W, Tr.</td>
<td>Iler, 1996</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Depth of weathering pits</td>
<td>Pit geometry</td>
<td>W, E</td>
<td>Felley, 1986</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Phyllic and inclusion relief</td>
<td>mm</td>
<td>W, E</td>
<td>McCollor and Nesje, 1993</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Weathering rind thickness</td>
<td>mm</td>
<td>W, E</td>
<td>Sharp, 1989</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Engineering description</td>
<td>Ordinal classes</td>
<td>W, E, A, Tr.</td>
<td>Dearnan et al., 1978</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Weathering rind hardness</td>
<td>Ordinal classes</td>
<td>W, E, A, Tr.</td>
<td>Kierman, 1993</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Pebble coherency</td>
<td>Ordinal classes</td>
<td>W, E, A, Tr.</td>
<td>Kierman, 1993</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Surface preservation</td>
<td>Removal of smooth surface</td>
<td>W, E</td>
<td>Sharp, 1996</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Glaister splitting</td>
<td>Ratio split to non-split</td>
<td>W, Tr.</td>
<td>Burke et al., 1980</td>
</tr>
<tr>
<td>Field measurements</td>
<td>Mechanical strength</td>
<td>Ordinal classes</td>
<td>W, E, A, Tr.</td>
<td>Grant, 1989</td>
</tr>
</tbody>
</table>

Laboratory measurements	Stable carbon dioxide	Ratio of mobile to immobile oxide	W, Tr.	Relle, 1985; Duxon et al., 1984
Laboratory measurements	Ratios to unweathered rock	g/μm²	W, Tr.	Jenny, 1941; Kaufmann, 1987
Laboratory measurements	Ratios to stable minerals	Ratio, except for zircons	W, Tr.	Dryden and Dye, 1946; Milnes & Fitzpatrick, 1989
Laboratory measurements	Mineral abundance over time	molybdenum/sec	W, Tr.	Blum et al., 1994
Laboratory measurements	Laboratory solutions	mol/m³	W, E	Swoboda-Colberg and Drevv, 1993
Laboratory measurements	Quartz etching	Quartz characteristics	W, E	Lasaga and Blum, 1988; Thacker, 1991
Laboratory measurements	Cathodic etching	Piss distribution	W, E	Mcdonald and Britland, 1993
Laboratory measurements	Thermoluminescence	μmol/kg	W, E	Hall and Horn, 1993
Laboratory measurements	Clay mineralogy of weathering rind	Clay mineral types	W, Tr.	Oglesby and Karp, 1983
Laboratory measurements	K-Ar analysis of K-Mn oxides	Weathering ages in Ma	W, Tr.	Kierman, 1980; Colman, 1982
Laboratory measurements	Transmission electron microscopy	Changes in micrographs	W, E	Vasconcellos et al., 1992
Laboratory measurements	Bone deterioration	Ordinal stages of weathering	W, E	Eggins, 1990
Laboratory measurements	Compare ashes at different sites	Multiple characteristics	W, E	Lamm and Fox, 1989
Laboratory measurements	Lead	Lead isotopes	W, E	Lowe, 1996
Laboratory measurements	Cosmogenic nuclides	Isotopic ratios, ages in Ma, k.y.	W, E	Gose et al., 1993; Brown et al., 1994
Laboratory measurements	A and O isotopes	A, O	W, E	Ahlgren et al., 1993
Examination of dated features	Tombstones	mm/yr	W, E	Meiering, 1993a,b
Examination of dated features	Buildings	mm/yr	W, E	Dragovich, 1986; Paradie, 1993
Examination of dated features	Barrows	mm/yr	W, E	Gudge et al., 1993
Examination of dated features	Historic emergent shorelines	mm/yr	W, E	Matsuoka and Matsuoka, 1991
Examination of dated features	Photography	mm/yr	W, E	Fontes et al., 1993
Examination of dated features	Rock art	Classes; percent art lost	W, E	Campbell, 1991; Benito et al., 1993
into chemical gains and losses in larger systems (Brigham et al., 1991).

Even with new perspectives and techniques, there is room for an in situ microscopic approach to help address the following two problems in the quanification of chemical weathering: chemical weathering of rocks is often indirectly measured, and different methods measure chemical weathering in units that are often incomparable.

In many quantitative studies of chemical "weathering," the decay of minerals in a natural setting is only inferred by studying the erosion of weathered materials. Consider solutes leaving a drainage basin (April et al., 1986; Velbel, 1993b; Gibb and Kump, 1994). Solutes provide data on loss of mass integrated over an area, but this is a combination of weathering, transportation, eolian input, and cation-exchange reactions (April et al., 1986; Cerling et al., 1989; Goudie et al., 1990) that varies over short time scales (Dethier, 1988). Similarly, traditional field-based approaches (Blackwelder, 1931) still in common use today rely on measuring the erosion of weathered material, for example, the morphometry of "weathering pits" (Berry, 1994). Even in measurements of the decay of historical monuments (Paradise, 1993) or tombstones (Meierding, 1993a, 1993b) weathering is inferred, because the rate of erosion is assumed to be limited only by the rate of weathering.

Where true chemical weathering has been measured in a natural setting, results from different methods are often not readily comparable. For example, the thickness of "weathering rinds" (Colman and Pierce, 1981) cannot be compared to hardness measured by the Schmidt hammer (McCarroll and Nesje, 1993), nor these to solutes (April et al., 1986), P-waves (Crook, 1986), changes in the geometry of weathering forms such as tafoni (Matsukura and Matsuoka, 1991), or strain (Brigham and Dietrich, 1987). Problems of comparison are also encountered in relating field and laboratory studies of solutional erosion from weathering (e.g., Lasaga and Blum, 1986; Sverdrup and Warfvinge, 1993; Casey et al., 1993; Velbel, 1993a, 1993b; MacInnis and Brandley, 1993; Lasaga et al., 1994). It may be that the quantification of chemical weathering has not been standardized (Table 1), in part because of the complexity of the processes involved, but also because techniques of measuring weathering have different traditions in different disciplines. For example, Quaternary geology has developed its own peculiar ways of measuring weathering, as has geomorphology, watershed hydrology, soil science, engineering, and interdisciplinary efforts to interpret supergene minerals.

METHODS

Images formed by back-scattered electrons reveal variations in sample composition, since the yield is a function of average atomic number (Pye and Krinsley, 1984; Dilks and Graham, 1985). BSE images show varying elemental compositions within a polished sample, with lower atomic number regions appearing darker and higher atomic number regions appearing brighter. In contrast, secondary electrons provide information on sample topography and three-dimensional relationships among minerals (Bohor and Hughes, 1971).

As exemplified in Figure 1, different types of information can be obtained from BSE imagery of minerals: (1) when minerals are unweathered, at least at the scale of BSE imagery; (2) when minerals are partially or totally weathered to secondary products; and (3) porosity produced by dissolution of weathered minerals. Note the clear demarcation between the dissolved and unweathered orthoclase in Figure 1C and plagioclase in Figure 1D. Etched pyroxene can be differentiated from dark dissolution pores in Figure 1G. In contrast, secondary electrons cannot readily differentiate clays from weathered quartz in Figure 1A. BSE has also been useful in the rapid identification of heavy minerals (cf. Braun et al., 1990; Colin et al., 1992).

Porosity can be measured optically (Ehrlich et al., 1984), but BSE has the advantage of distinguishing much smaller pores, down to ~0.1 µm diameter (Krinsley et al., 1993). Furthermore, analysis of mineral composition by energy dispersive or wavelength dispersive detectors is routinely available on electron microscopes with back-scatter detectors. Although smaller pores can be resolved with secondary electrons, the digital output is not easily processed because edge effects make pore rims bright. Another advantage of BSE is the simultaneous imaging of texture and average atomic number (Milnes and Fitzpatrick, 1989; Cochran and Berner, 1993).

For this study, weathered rock was broken down into rock chips, which were placed in 2.5-cm-diameter molds filled with epoxy. One side of the weathering rind was polished, with the last stage a 0.3 µm aluminum grid. The following discussion presents the method of measuring porosity from digital image processing (DIP) of BSE imagery (Fig. 2).

(1) Obtain BSE Image. Image quality depends upon polish quality. Whether the output is photographic (as here) or digital, there must be enough contrast to differentiate materials.

(2) Video Digitizing. Newer electron microscopes often provide digital data for subsequent image processing. However, to demonstrate the utility of the technique for researchers who do not have access to digital BSE output, black-and-white prints of images from a JEOL Superprobe were video digitized into a PC-based image processing system. In this case ERDAS software and a Sony camera were used to make analog-to-digital conversions of gray-scale BSE images into digital imagery on a scale of 256 (0 to 255) in a one-band 512 × 512 matrix (Jensen, 1986). A "control" image was used at the start and end of each video-digitizing session to verify that results would be comparable. Specialized photo-stand light bulbs were used originally, but a gradual deterioration occurred that caused differences in results between sessions. Then, inexpensive household bulbs were tried, and results were repeatable to session to session.

(3) Data Preprocessing. Each specific BSE image has material unsuitable for measurement of pores with DIP. Epoxy, magnification and scale information, borders, and vesicles in basalt were "cut out." Biotite was also cut out for reasons discussed later. The resultant image was processed further.

(4) Isolation of Weathered Material. The focus of this paper is the measurement of pores from in situ chemical dissolution. However, BSE can also be used to "map" and measure secondary products, because they have different elemental compositions and textures than primary minerals (Figs. 1B and 1G). In some cases, the Laplacian filter (cf. Jensen, 1986),

\[
\begin{align*}
0 & \quad -1 & \quad 0 \\
-1 & \quad -1 & \quad -1 \\
0 & \quad -1 & \quad 0
\end{align*}
\]

had the effect of bringing out weathered zones. After recognition in unenhanced or enhanced images, pixels in weathered areas were tabulated as they were "cut out." In order to preserve data as to original mineralogy, different weathered areas are assigned different "classes."

(5) Classification. Histograms of the remaining data revealed specific peaks of
gray-scale values representative of different minerals and porosity. Histograms were used to identify the number of classes in the unsupervised classification of the remaining data (Jensen, 1986). The output from the ERDAS image processing program is a "map" of the different classes of brightness values and the number of pixels in each class. With scale information about pixel area, these data are translated into cross-sectional area in square micrometers. Then, square micrometers can be readily translated to a variety of units, for example g/m² with knowledge of sample density.

This method of assessing porosity has several limitations.

(1) Scale Effects. Porosity can be finer in resolution (Nahon, 1991) than the ~0.1 μm limit of BSE (Krisnley et al., 1993). Internal pores in clay matrices, for example, are best imaged by high-resolution transmission electron microscopy (Robert and Tessier, 1992). Therefore, porosity measured by BSE is best interpreted as a minimum value.

Pores greater than ~0.1 μm diameter are measured differently at different magnifications in the same sample area (Fig. 3). For example, Figure 1H appeared to be an image of solid biotite, until dissolved areas were resolved at higher magnifications. An efficient strategy is to use the lowest magnification that can resolve the smallest porosity visible with BSE. For example, "plateau" is sometimes reached (Fig. 3A), where it is more efficient to use a lower magnification to analyze a larger area. In other cases (Fig. 3B), higher magnifications are necessary to resolve pores. In this study, variable magnifications from 400× to 5000× were applied.

(2) Misidentification of Weathering. A second limitation of BSE includes the potential to incorrectly identify and interpret weathered minerals, unweathered minerals, and pore space. This section explores how these problems were identified and handled. Sometimes organic matter occupies pores in weathering rinds (Cochran and Berner, 1993) but is dark in BSE imagery because of the low atomic number. The presence of carbon can be tested with a wavelength dispersive detector and by switching back and forth between secondary (organics visible) and back-scattered electrons (organics dark) (Watts, 1985).

Porosity occurs in primary rocks and minerals. Basalt contains vesicles, and even unweathered quartz can contain 0.21% to 0.51% voids in 10–50 nm pores (Shur et al., 1966). Porosity can also be "inherited" from a prior weathering cycle or from diagenesis (Giles and Marshall 1986; Ehrlich et al., 1984, 1991), or from millions of years of subsurface weathering (Vasconcelos et al., 1992). How porosity data is interpreted depends upon the field context. In the case study on alkali feldspar, inheritance from a prior weathering cycle is likely. In the case of polygonal cracks and gamma pits, some pores were likely inherited from a time when the current surface was lower in the weathering rind. Rates of dissolution cannot be determined where there is uncertainty over when weathering started. In the first two case studies, however, the issue is not the rate of weathering but relationships be-

![Graph](image)

Figure 3. Plot of porosity versus magnification for (A) plagioclase and (B) clinopyroxene from feldspar flow Hualalai, Hawaii (Moore and Clague, 1991). In each mineral curve, the same area was analyzed.
between contemporary weathering forms and total porosity, regardless of when it occurred.

Studies of weathering rates over time, in contrast, must assume that the “weathering clock” starts at a known time with a value that can be established. In the third case study of weathering rind development on ventifacts, the weathering system was “reset” by eolian abrasion. This was verified by examining the rock well below the measured rind, and pores ∼0.1 μm could not be discerned. Inherited porosity was similarly ruled out in the fourth study on Hawaiian plagioclase weathering, because pores could not be seen within plagioclase grains in the interior of the basalt, at least at the 0.1 μm resolution limit of BSE.

It is difficult to measure porosity in supragene products such as clay minerals because of internal porosity (Robert and Tessier, 1992). Although secondary precipitates were not observed within weathering pores studied here, they would pose complications (Brimhall et al., 1988; Merino et al., 1993). After recognition with EDS (energy dispersive spectrometry) or TEM (transmission electron microscopy), they could be manually cut out of the digital image to avoid influencing results.

Mineral weathering, however, cannot always be identified with BSE. For example, quartz weathers to an amorphous phase before it subsequently dissolves (Pope, 1995). Such processes may also occur in other silicates (Schott and Petit, 1987). These amorphous areas are not distinguishable from quartz using BSE alone because there is no change in atomic number or texture. Yet, when barium adsorbs to amorphous zones on quartz, weathered areas appear brighter and distinguishable by BSE (Fig. 1B).

In summary, porosity values cannot be used blindly without consideration of the inherent limitations of the imaging system or the field context.

(3) Expansion Effects. For minerals that expand when weathered, such as biotite (Fig. 11), it is difficult to make a direct translation between porosity and loss of mass. Although biotite expansion can be very important in weathering dynamics, pores created by physical expansion alone would not represent a loss of mass. Because it is not possible to discern dissolution pores from physical expansion, the biotite that was present in the aplite ventifact case study (<4% by area) was cut out before further analysis took place; therefore, the measured rate of dissolution in the third case study excludes loss of mass from biotite.

(4) Sample Preparation. Sample pretreatment can mimic weathering effects. Additional pitting and coatings can form as samples are prepared for SEM examination (Creemens et al., 1987). Polishing can create shallow scars, and crack enlargement can occur with larger grinds. As a consequence, only distilled water and ultrasonic cleaning were used in the preparation of cross sections. Grooves and shallow pits, created by the submicron aluminum polishing grit, do not affect BSE imagery—although they can be seen when secondary electrons image the same locale. Thus, using both techniques it is possible to determine the difference between pitting made by polishing and natural dissolution.

INITIATION OF ALVEOLI IN CENTRAL ARIZONA

Tafoni and alveoli are large and small honeycombed hollows in rocks, where enlargement by grain erosion is limited by weathering. Matrix and grain-boundary dissolution, salt-expansion weathering, rock coatings, differential fluid flow toward rock surfaces that are not coated, expansion of clays, silica dissolution assisted by salt and organic acids, and ferrous iron reactions may play a role in the extension of caverns by promoting granular disintegration of rock (e.g., Dragovich, 1969; Conca and Rossman, 1982; Mustoe, 1982; Twidale, 1982; McCreery and Smith, 1984; Conca and Astor, 1987; Matsukura and Matsuoka, 1991; Young and Young, 1992; Paradise, 1993; Mottershead and Pye, 1994). An uncertainty exists in research on honeycombed weathering forms about how they start.

This case study examines whether porosity is associated with initiation of the smallest hollows (subcentimeter alveoli). Samples were collected from sandstones of the Supai formation, near Sedona in central Arizona, where calcium carbonate, amorphous silica, and clay minerals cement quartz grains. Forty-five samples were collected from transects into and out of alveoli smaller than a centimeter. Fifteen samples came from the center of alveoli; fifteen from the sides; and fifteen from 1 cm away from alveoli. Porosity was measured within 100 μm of the surface.

Samples from the centers, sides, and distant from alveoli had porosity values that are significantly different from one another (p [probability] < .01). Alveoli centers averaged (and 1 S.D.) a porosity of 47.9% ± 13.5%, alveoli sides 21.7% ± 11.6%, and locations 1 cm distant from alveoli 9.4% ± 5.0%. Porosity measurements of sandstone 5 mm beneath alveoli centers had values of 4.6% ± 3.0%. Higher porosity in the center and sides of incipient alveoli, however, only reveal a correlation between form initiation and weathering. An advantage of BSE imagery is an ability to examine in situ evidence for different weathering processes.

Qualitative observations of BSE imagery (Fig. 4) indicate that matrix removal is the most important process in alveoli initiation. Figure 4B reveals an alveolus where all but a few remnants of silica and clay cement have been lost. Most of the calcium carbonate (brighter in image) cement in Figure 4D has eroded. Figure 4C illustrates clay loss in the center of an alveolus. The ragged edges of quartz in Figures 4D and 4E suggest that weathering has occurred along grain margins, but the most-weathered quartz grain only had a porosity of 2.3%.

A model of tafoni initiation consistent with these data starts with enough matrix loss to reduce intergran cohesion. Incipient alveoli occur where there is a total porosity within 100 μm of the rock surface > ~32%. Upon reaching this threshold of porosity, granular disintegration occurs. Detached quartz grains are then eroded by transport processes involving lichens (Fig. 4E), and by inference, probably mass wasting, overland flow, and perhaps deflation. The threshold needed to reduce resistance to shear stresses enough to erode grains will likely be different for each lithology.

This study is the first to define a threshold associated with the initiation of alveoli. A lithologic, climatic, or spatial pattern may become evident with additional data on incipient alveoli in other settings. This case study also illustrates how a microscopic approach measures weathering in situ, as opposed to measuring the morphometry of a form that is a product of both weathering and erosion of weathered material.

1GSA Data Repository item 9519, data on the case studies, is available on request from Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301.
MAINTENANCE OF POLYGONAL CRACKS AND GNAMMA PITS IN BASALT

Processes that initiate a weathering form may differ from those that foster its maintenance. A positive feedback must occur for a form to grow. A negative feedback erases the form. A dynamic equilibrium results in form maintenance. This case study examines in situ mineral dissolution and rock coatings associated with gnamma pits and polygonal cracks; the objective is to understand how these forms continue to exist.

Polygonal cracks and gnamma pits develop on basalt boulders on the drier slopes of Kaho'olawe and Maui islands in Hawaii. For this study, a single boulder (Fig. 5) was sampled from a hillcrest near Pu'u Hupa (~280 m) on the west side of Maui. The boulder has an orange-brown glaze of mostly amorphous silica (Farr and Adams, 1984; Curtiss et al., 1985), as well as patches of manganiferous rock varnish (Dorn et al., 1992). Coatings of silica glaze also occur on sandstones that are polygonally cracked (Williams and Robinson, 1989). The particular boulder (Fig. 5) was selected for study because I saw a platelet (5 mm × 3 mm × <1 mm; Fig. 6A) erode during an intense
The platelet had a porosity of 37%. Figure 6E presents the new surface of the boulder that was sampled after the spalling event.

On the boulder, polygonal cracks sometimes occurred at preexisting fractures (cf. Whalley et al., 1982). The greater porosity in the center of Figure 6G, for example, is associated with a microfracture that runs downward at least 4 mm into the rock. In contrast, there is no clear correspondence between gamma pits and observable lithologic weaknesses. Lichens, cyanobacteria, and fungi are more common in gamma and crack depressions; they erode rock varnish and enhance rock dissolution rates (cf. Wasklewick, 1994), as seen on the right side of Figure 6F. The focus here, however, is not how the weathering forms started, but how they continue to exist. Maintenance requires that weathering and erosion of pits and cracks be greater than the rate of reinteriorization of interpit “ridges.”

The role of mineral dissolution and silica glaze in the maintenance of gamma pits and polygonal cracks was assessed through BSE images. Porosity was measured in the upper 40 μm of the weathering rind; silica glaze thickness was also measured above the rinds. Three images each were analyzed from ten samples of polygonal cracks; three each from ten samples of gamma pits; and three each from ten samples of “interpit” ridges. In addition, each section was imaged 5 mm under rinds to assess porosity prior to subaerial exposure.

Figure 7 reveals that porosity increases with silica glaze thickness, a relationship that was significant at p < 0.001. Similar correlations were found when the data set was divided into gamma pits, polygonal cracks, and interpit locales. Some of the scatter could be from the inability of this method to measure pores smaller than 0.1 μm. Another problem is that it was not possible to distinguish primary vesicles from dissolved areas; therefore measured values undoubtedly include some of the inherent vesicle porosity in the boulder. Interior porosity 5 mm beneath rinds measured 2.9 ± 2.3%, a low value that may suggest the boulder originated in an interior portion of a lava flow.

A conceptual model for the maintenance of gamma pits and polygonal cracks could be described as a see-saw between increasing rind weathering porosity and the development of rock coatings. The silica glaze rock coating (and to a lesser extent rock varnish) holds the weathering basalt in place as porosity increases (Fig. 6H, left side of Fig. 6F; right side of Fig. 6D). Porosity increases until erosional shear stresses are greater than interparticle resistance to shearing, and erosion of rind and rock coating occurs. No weathering rind exceeded a porosity of ~47% (Fig. 7), whereas rind spalling was observed to occur at a porosity of ~37%.

In this model, erosion is episodic, occurring when the “case hardening” effect of the coating can no longer hold together a rock surface weakened by weathering. After a weathering rind spalls, incipient coatings may form on the new subaerial surface (Fig. 6B). This new surface may also spall away again (Fig. 6C), until a point is reached where a rock coating can thicken on a relatively stable basaltic substrate (Fig. 6H). Figure 6D shows the center of a polygonal crack (left side) and the side of the crack (right side), where the lack of a rock coating on the left side indicates ongoing spalling of the rind.

This case study builds on three themes in weathering: Silica glaze enhances the stability of rock surfaces (Hobbs, 1917); rock coatings are important in the maintenance of weathered forms (e.g., Conca and Rossman, 1982; Conca and Astor, 1987; Williams and Robinson, 1989; Mottershaw and Pye, 1994); and, lastly, weathering in the immediate or distant past influences the current form of the land surface (cf. Twidale, 1982; Brinhall et al., 1991; Vasconcelos et al., 1992; Gosse et al., 1993). This case also illustrates that the amount of chemical weathering (measured here as in situ porosity) may not necessarily relate to the current shape of a weathering form, an assumption made by some who try to infer rates of weathering by measuring form (Table 1). The amount of in situ weathering, in this case, depends upon the current state of dynamic equilibrium between chemical weathering, rock coating formation, and shear stresses.

MEASUREMENT OF WEATHERING RINDS ON GLACIAL VENTIFACTS

The first two case studies concerned how measurements of in situ weathering can reveal insights into the initiation and maintenance of weathering forms. This case study turns to how digital processing of BSE imagery can be used to quantify rates of in situ dissolution, and to compare units commonly used to measure weathering that are not now comparable. Rates of in situ dissolution can only be determined where physical erosion can be ruled out, lithological and present-day microenvironmental fac-
tors are controlled as much as possible, and inherited weathering is unlikely.

Bach (1995) presents a situation where long-term rates of subaerial boulder weathering can be studied. The Pleistocene glacier at Bishop Creek periodically advanced out of the Sierra Nevada, California. Corresponding katabatic winds polished morainal boulders into ventifacts with characteristic grooving. As the glacier terminus shifted positions, the location of eolian abrasion shifted in a fashion summarized in Figure 8. Eolian abrasion ceased at position V1 about 60–65 ka. Abrasion ceased by ~17 ka at V2 and ~14 ka at V3 (Bach, 1995). Of the boul-

Figure 6. BSE imagery of weathering associated with polygonal cracking and gnamma pitting of basalt from Maui Island, Hawaii. Scale bar in micrometers. Images A, B, C, and E are from gnamma pits. Images D, F, and G are from polygonal cracks. Image H is from an “interpit” locale. The lines in D and E denote the base of the weathering rind. Silica glazes occur on top of the weathering rinds in images A and H. Rock varnishes occur in images B, D, and F and are distinguished by brighter textures (from higher Z [atomic number] of Mn and Fe). Lichen growth, not visible with BSE (Watts, 1985), occurs on the right side of F.
ders that showed grooving, most had lost 5%–95% of their windward abraded surfaces to spalling. Where eolian polish is still present, however, only chemical weathering and no mechanical loss has occurred since abrasion ceased.

The amount of weathering that predated eolian abrasion was assessed by examining porosity in the rock at a depth of 1.5 cm under the weathering rind. No inherited porosity was found to the 0.1 μm limit of the BSE method. Microenvironment was controlled by avoiding lichens and collecting from the tops of the boulders in order to minimize the influence of water runoff and water retention that can amplify weathering rates (Fig. 9, D and E). In order to control lithology, only aplite samples were used (Fig. 9, A, C, D, and E), not other rock types at the site (Fig. 9, B and F). Rinds were measured from nine different aplite boulders from sites V1, V2, and V3 (Fig. 8).

A traditional approach to the study of weathering rinds is to measure rind thickness. Using BSE imagery, rind thicknesses averaged 0.9 mm with a standard deviation of 0.5 mm on nine aplite ventifacts from site V3; this is statistically indistinguishable from the nine ventifacts from site V2 (1.1 ± 0.6 mm). In contrast, nine aplite ventifacts from site V1 had a statistically distinct ($p < 0.01$) population of rinds at 3.2 ± 1.4 mm. Rind thickness appears to develop at a fairly linear rate of ~0.5–0.6 mm/k.y. for this rock type and environment.

The same BSE imagery used to make rind thickness measurements was used to calculate porosity. The loss of mass from dissolution was calculated from density of aplite (~2.6 g/cm3), rind thickness (mm), rind porosity (%), and time since eolian abrasion ceased (k.y.). Sites V1 and V2 (late Wisconsinan) dissolved at 40 ± 16 g/m2/k.y. and 43 ± 16 g/m2/k.y., respectively. In contrast, the long-term average at site V3 (early Wisconsinan) jumped to 67 ± 23 g/m2/k.y. (Note that these values are minimums, because they exclude pores <0.1 μm and loss of mass from biotite, which makes up <4% of the aplite).

The rate of porosity growth through dissolution appears to increase over time, which is consistent with Meierding (1993b, p. 283), who also found that subaerial weathering accelerates over time. A positive feedback is explained by retaining more water as more capillary pores develop (Swoboda-Colberg and Drever, 1993). These results differ from studies of mafic soil clasts, where rates of rind thickening slow over time (Colman and Pierce, 1981). The difference in results could be due to progressive spalling of older weathering rinds within soil, which would give the impression that rates of weathering slow over time. Another possibility could be that the pore sizes in aplite (Fig. 9) have slower rates of evaporation and capillary water movement than the mafic clasts of Colman and Pierce (1981).

3Porosity data for each boulder are presented in the GSA Data Repository. See footnote 1.
This case study illustrates how a microscopic approach can be used to "translate" different units that are used to measure weathering. The thickness of a weathering rind (in millimeters) is a classic field measure of site-specific weathering (e.g., Colman and Pierce, 1981; Birkeland, 1984; Berry, 1994). Rinds are visible in part because of dissolution, which creates porosity. Where indirect measures of weathering are from loss of mass, the resultant porosity can be measured in situ and compared with studies of catchment weathering (e.g., Velbel, 1993a) or soils (e.g., Brimhall et al., 1991; Colin et al., 1992; Sverdrup and Warfvinge, 1993).
TEMPERATURE, PRECIPITATION, AND MICROENVIRONMENT IN PLAGIOCLASE DISSOLUTION

Climate is generally perceived to be a key variable in chemical weathering (cf. Yatsu, 1988; Nahon, 1991; Bluth and Kump, 1994). Quantifying climatic controls, however, has been difficult (Pope et al., 1995). In this case study, digital processing of BSE imagery of Hawaiian basalts is used to assess the role of mean annual temperature, mean annual precipitation, and microenvironment on plagioclase dissolution. Hawaii “provides a unique opportunity to study, side by side, rocks of similar composition that have been exposed to subaerial weathering for vastly different lengths of time...” Furthermore, the wide variations in topography and rainfall make it possible to assess how these factors affect rock weathering” (Farr and Adams, 1984, p. 1077).

Hualalai Volcano (Moore et al., 1987; Moore and Clague, 1991) offers a site where time, lithology, microenvironment, and climate can be controlled. Dominant lavas are alkaline olivine basalts (Clague et al., 1980; Moore et al., 1987), many of which have 14C ages on burned charcoal (Rubin et al., 1987). Over 90% of Hualalai’s surface is Holocene, with over half being younger than 3000 14C yr old. The advantage of this youth is the retention of constructional surfaces that permit a specific age assignment for the onset of weathering. Although lava flows usually lose their initial glassy surface within a few years (Farr and Adams, 1984), extensive sections of both pahoehoe and aa flows on Hualalai retain vesicular constructive surfaces for 10° yr (Kurz et al., 1990; Dorn et al., 1992).

Two studies were conducted to examine the interplay of precipitation, temperature, and microenvironment. First, a single lava flow was sampled along a moisture-temperature gradient from dry-warm conditions near sea level to wet-cool higher on Hualalai. Second, different lava flows of similar age were sampled along the 500 mm isohyet, allowing precipitation to remain constant while temperature varies with elevation (Fig. 10).

Three assumptions are made in both studies. First, prior to exposure in a weathering rind, pores do not exist in the matrix plagioclase grains. This assumption was tested and verified by examining nonphenocryst plagioclase grains at a depth of ~1 cm under the weathering rind. Pores were not observed at the ~0.1 μm limit of the BSE method.

Second, it is possible to control microenvironmental effects at the millimeter scale through careful sampling. Wasklewicz (1994) distinguished three very different weathering microenvironments on Hualalai. One is rich in organic acids released by lichens and other rock-surface organisms (Figs. 11A and 11B). Field-based studies of tropical basalt weathering (Schirrmeister and Störr, 1994; Wasklewicz, 1994) and laboratory studies (Welch and Ullman, 1993) have established that organic acids can greatly enhance weathering rates and can change weathering sequences in tropical settings. The second microenvironment is where rock coatings cover rock surfaces (Fig. 11C). The third microenvironment has
a paucity of acid-producing surface organisms and is not covered by rock coatings. Weathering of silicates in these organic-poor environments is primarily through reactions with carbonic acid, where “chemical weathering is severely limited because introduction of acids to the profiles is limited by rainfall” (Nesbitt and Wilson, 1993, p. 771).

In the first study, measurements were taken from both organic-poor and organic-rich microsites. Organic-rich environments were sampled directly underneath crustose lichens. Organic-poor environments were sampled ~3 mm distant from the margin of the rock coatings. In the second study, measurements were taken only from organic-poor microsites. Although it is impossible to normalize all microenvironmetal conditions, due to environmental changes over the last 3 k.y., in my opinion this approach offers a reasonable partial solution to the very sticky problem of controlling microsite variability.

The third assumption is that plagioclase weathers by congruent dissolution. The larger phenocrysts of plagioclase on Hualalai weather by congruent dissolution, as well as the formation of clay mineral secondary weathering products (Wasklewicz, 1994). The smaller plagioclase grains within basalt matrix weather only by dissolution-making “holes” (Fig. 12). Clay minerals are not seen in these pores. Although the reason for this dichotomy is unclear, the “style” of weathering of the matrix plagioclase is to make holes. Our observations mirror those of Wasklewicz (1994), who also worked on Hualalai.

In each study, five different polished cross sections were examined with BSE from each site (Fig. 10). In each cross section, transects were placed in the upper 50 μm of the weathering rinds. The plagioclase feldspars encountered in the cross sections had a similar microprobe composition (Na₂O, ~3.5%; MgO, ~0.3%; Al₂O₃, ~29%; SiO₂, ~49%; K₂O, ~0.3%; CaO, ~17; TiO₂, ~0.2; FeO, ~0.7), but energy dispersive analysis was used to verify the relative abundance of Na and Ca. The first 20 plagioclase feldspars (not including phenocrysts) with a CaO/Na₂O ratio of ~4-5 were selected for digital image processing. Images of individual plagioclase grains were then cut out with the ERDAS image processing system. I assume that dissolution, totaled for 20 grains each from five separate samples from each site, is truly representative of the general state of the feldspars—not an artifact of some spatial anomaly in crystalline defects or lava flow character (White and Hoehn, 1992). Natural weathering is known to be spatially discontinuous (Swoboda-Colberg and Drever, 1993; Wasklewicz, 1994), and not all grains that were in the transect were weathered (Fig. 12A). This is not surprising, because dissolution is preferential to crystalline defects (Holdren and Speyer, 1985).

The calculation of porosity has two components: total grain area (in μm²) and pore area (in μm²). Feldspars that had no pores (at the 0.1 μm resolution of BSE) were measured first; this cross-sectional area was given a value of 0% porosity. The BSE images of feldspars that did weather were subjected to a density slicing since they consisted of two classes: dark pores and bright plagioclase (Fig. 12). The output was a calculation of number of pixels in the unweathered section of the grain, and the number of pixels in the weathered section, where pixel areas were scaled to a cross-sectional area in square micrometers. Lastly, total cross-sectional areas (weathered and unweathered) were summed for the 100 grains from each site.\(^4\)

4Raw data are presented in the GSA Data Repository. See footnote 1.

Weathering Along a Single Lava Flow

Time and lithology were controlled by collecting only from the ~2885 ± 150 14C-yr-old t5d p3.5 flow (Moore and Clague,
Figure 12. Plagioclase weathering on Hualalai Volcano, Hawaii. Scale bars in micrometers. (a) BSE images of polished cross section from the Puu Waawaa Ranch flow, where the typical style of plagioclase feldspar weathering by dissolution is exemplified. Smaller arrows identify plagioclase grains. The large arrow identifies the locale of a typical electron microprobe analysis of the unweathered section of the plagioclase grain: Na₂O, 3.48; MgO, 0.26; Al₂O₃, 27.84; SiO₂, 48.45; K₂O, 0.32; CaO, 16.28; TiO₂, 0.18; MnO, 0.00; FeO, 0.86. (b) BSE image of a broken weathering rind from the same site as a. Arrows identify plagioclase crystals (determined by EDS analysis).

Collection sites span >1500 m from forest with ~1200 mm mean annual precipitation to near desert biomes close to sea level with <500 mm precipitation (Fig. 10). Total cross-sectional areas of plagioclase analyzed from each one of different sites ranged from 127 000 µm² to 156 000 µm².

In both organic-poor and organic-rich microenvironments, plagioclase weathering increased with elevation (more precipitation), as Johnsson et al. (1993) found in interpreting soil clay mineralogy, despite the negative factor of lower temperatures. Higher weathering rates at higher elevations are undoubtedly tied to increased moisture abundance, through reduced evaporotranspiration (cooler temperatures), increased precipitation, and less insolation receipt (more clouds). The increasing offset between organic-rich and organic-poor microsites at higher elevations (Fig. 13) may be due to organic-rich microenvironments having progressively greater concentrations of organic acids and greater moisture availability trapped under the lichen cover. In contrast, organic-poor microenvironments experience more rapid water runoff, without organic acids or moisture retention by lichens.

Weathering Along an Isohypet

In the second study of plagioclase weathering, temperature varied while precipitation was held constant along the 500 mm isohyet (Giabelluca et al., 1986; Fig. 10). Samples were collected from only organic-poor sites on flows that range in age from 2000 to 2700 ¹³C yr (Moore and Clogue, 1991). Since the 500 mm isohyet wraps around Hualalai in an uphill direction, mean annual temperature lowers with elevation, with values from Armstrong (1973). The same methodology as in the first study was used, but percent weathering is normalized to age, because there is some variability in age among different flows.

Figure 14 reveals that in situ weathering of plagioclase is particularly sensitive to temperature. Rates of dissolution per thousand years are not distinguishable for the two warm low elevation sites (1.07% ± 0.04% porosity/k.y. at 20 m; 0.99% ± 0.05% porosity/k.y. at 100 m). At ~500 m, however, the rate drops to 0.78% ± 0.04%/k.y. The biggest reduction in weathering rates occurs at the 2380 m site (0.21% ± 0.04%/k.y.). The strong temperature sensitivity of plagioclase dissolution has implications for long-term climate evolution (Brady, 1991).

A strong temperature dependency of plagioclase weathering is consistent with Velbel's (1993a) study of watershed chemistry and Hellmann's (1994) laboratory study. However, these results may vary with different aqueous species at surface reaction sites (Casey and Sposito, 1992). The in situ temperature dependence of plagioclase weathering, therefore, may differ under a cover of epilithic organisms.

CONCLUSION

Chemical weathering transforms the earth's crust through biogeochemical interactions with the atmosphere, biosphere, and hydrosphere. Chemical weathering is a fundamental part of a changing earth, and it is widely recognized as an important player in
the earth's long-term evolution (Brady, 1991; Berner, 1992; Gibbs and Kump, 1994). At the interface between public policy and earth science, “estimation of the rates of mineral-water reactions at watershed, continental and global scales is of paramount importance in understanding the short- and long-term effects of natural and anthropogenic influences on the Earth system” (Brantley and Velbel, 1993, p. vii).

Great advances have been made in quantitative chemical weathering research in recent years, in the number of different approaches used to quantify weathering (Table 1), and in the adoption of more holistic perspectives that place chemical weathering within a framework of synergistic earth systems (e.g., Brimhall et al., 1991; Lasaga et al., 1994; Pope et al., 1995). Still, there is a niche not met by other techniques: measurement of mass dissolved in situ, which in turn facilitates comparisons among different units used to measure mass balances in weathering.

The purpose of this paper is to present a microscopic method that helps fill this niche by combining two commonly used tools, digital image processing and back-scattered electron microscopy (BSE). Digital processing of BSE imagery quantifies chemical weathering from in situ dissolution. Holes appear dark in BSE, and these can be counted because they contrast greatly with adjacent mineral material that appears bright. Although there are inherent technical and field limitations to digital processing of BSE imagery, there is a wide array of weathering problems that can be addressed. Four case studies are presented that exemplify different types of weathering research: initiation of weathering forms; maintenance of weathering forms; quantifying rates of rock dissolution; and assessing the importance of temperature, precipitation, and microenvironment on plagioclase dissolution.

The first case study focuses on the relationship between in situ porosity and the initiation of small honeycomb weathering forms, subcentimeter alveoli sampled from in sandstone in central Arizona. Incipient alveoli occur where porosity exceeds \(\sim 32\% \) in the upper 100 \(\mu \)m. One explanation is that, upon reaching this threshold, the resistance of sandstone to shear stresses (e.g., overland flow, lichen thallus growth) is reduced enough to allow grain detachment. Although the specific porosity value needed to develop alveoli will certainly vary with lithology, this supports the observation of Paradise (1993) that thresholds exist in the development of weathering forms.

Maintenance of weathering forms may require conditions different from inception, as in the second case study on gamma pits and polygonal cracks in Hawaiian basalts. Coatings of silica glaze effectively freeze rock surface erosion for a period of time, but rock weathering continues underneath the protective rock coating. Porosity gradually grows under the silica glaze until the weathering rind loses cohesion at a porosity of \(\sim 37\%-47\% \), and both rind and silica glaze spalls. Then, the silica glaze starts to grow again, and another cycle of weathering-rind development begins.

In studies of weathering forms, pores that develop during subaerial exposure cannot be distinguished from pores inherited from past weathering in the subsurface (cf. Colin et al., 1992; Vasconcelos et al., 1992). However, the focus in the first two case studies is on the relationship between in situ porosity, weathering form, and weathering environment. In contrast, the third and fourth case studies involve measuring long-term dissolution rates in systems that do not have inherited weathering. This is possible when weathering started at an established time in the past.

The third case study concerns the measurement of rock dissolution in weathering rinds formed on wind-polished aplite boulders. Because no erosion has taken place since eolian abrasion ceased at known times in the past, weathering rates could be calculated. Using the age of the ventifacts and the density of the boulder, dissolution pores yield data on mass weathered per unit area. For the last 14 k.y., rinds \(0.9 \pm 0.5 \) mm thick lost \(40 \pm 15 \) g/m\(^2\)/k.y. Over the last 17 k.y., rinds \(1.1 \pm 0.6 \) mm lost \(43 \pm 16 \) g/m\(^2\)/k.y. Dissolution rates increased over time to \(67 \pm 23 \) g/m\(^2\)/k.y. for the last 60–65 k.y., even though weathering rinds thickened at a linear rate to \(3.2 \pm 1.4 \) mm. These values can be compared directly to units used in watershed and soil mass balance research (Table 1), unlike conventional approaches to the measurement of boulder weathering.
The fourth case study assesses the role of temperature, precipitation and microenvironment on rates of in situ plagioclase dissolution, where the onset of weathering is established by radiocarbon ages on 2- to 3-k.y.-old Hawaiian lava flows. Plagioclase dissolution is influenced by temperature (0.07°C increase per °C), but not as much as precipitation, however. Microenvironment is a more important control on weathering rate than either mean annual precipitation or temperature. Rocks close to sea level in organic-rich environments (under lichens) weather twice as fast as adjacent organic-poor environments (weathering from carbonic acid). As elevation and precipitation increase, organic-rich microsites weather even faster, until at ~1200 m they dissolve approximately seven times faster than plagioclase in adjacent organic-poor microenvironments.

In summary, digital processing of backscatter imagery offers a powerful way to study the in situ dissolution of rocks and minerals, either as a stand-alone tool or as a method that complements other approaches used in chemical weathering research.

ACKNOWLEDGMENTS

This research was supported in part by National Science Foundation Presidential Young Investigator award 8918644. This manuscript benefited from the comments of P. Beyer, G. Brimhall, F. Brown, F. Colin, D. Krinsley, G. Pope, and T. Wasklewicz. Thanks to G. Pope for permission to use his Cabo San Lucas sample, T. Liu for assistance in sample preparation, A. Bach for a modified map of his Bishop Creek ventifact sites, P. Brady for discussions on the temperature dependence of plagioclase weathering, R. Moore and F. Trudsell for introducing me to Hualalai, and J. Clark for assistance with the micropore. The Arizona State University micropore was purchased in part by National Science Foundation grant EAR 8904163.

REFERENCES CITED
